Mibefradil reduces blood glucose concentration in db/db mice

نویسندگان

  • Yujie Lu
  • Min Long
  • Shiwen Zhou
  • Zihui Xu
  • Fuquan Hu
  • Ming Li
چکیده

OBJECTIVE Numerous recent studies suggest that abnormal intracellular calcium concentration ([Ca2+]i) is a common defect in diabetic animal models and patients. Abnormal calcium handling is an important mechanism in the defective pancreatic β-cell function in type 2 diabetes. T-type Ca2+ channel antagonists lower blood glucose in type 2 diabetes, but the mechanism remains unknown. METHODS We examined the effect of the Ca2+ channel antagonist mibefradil on blood glucose in male db/db mice and phenotypically normal heterozygous mice by intraperitoneal injection. RESULTS Mibefradil (15 mg/kg, i.p., b.i.d.) caused a profound reduction of fasting blood glucose from 430.92±20.46 mg/dl to 285.20±5.74 mg/dl in three days. The hypoglycemic effect of mibefradil was reproduced by NNC 55-0396, a compound structurally similar to mibefradil but more selective for T-type Ca2+ channels, but not by the specific L-type Ca2+ channel blocker nicardipine. Mibefradil did not show such hypoglycemic effects in heterozygous animals. In addition, triglycerides, basal insulin and food intake were significantly decreased by mibefradil treatment in the db/db mice but not in the controls. Western blot analysis, immunohistochemistry and immunofluorescence staining showed a significantly increased expression of T-type Ca2+ channel α-subunits Cav3.1 and Cav3.2 in liver and brain tissues from db/db mice compared to those from heterozygous animals. CONCLUSIONS Collectively, these results suggest that T-type Ca2+ channels are potential therapeutic targets for antidiabetic drugs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deletion of glycerol channel aquaporin-9 (Aqp9) impairs long-term blood glucose control in C57BL/6 leptin receptor–deficient (db/db) obese mice

Deletion of the glycerol channel aquaporin-9 (Aqp9) reduces postprandial blood glucose levels in leptin receptor-deficient (db/db) obese mice on a C57BL/6 × C57BLKS mixed genetic background. Furthermore, shRNA-mediated reduction of Aqp9 expression reduces liver triacylglycerol (TAG) accumulation in a diet-induced rat model of obesity. The aim of this study was to investigate metabolic effects o...

متن کامل

Sargassum coreanum extract alleviates hyperglycemia and improves insulin resistance in db/db diabetic mice

BACKGROUND/OBJECTIVES The goal of this study was to examine the effect of Sargassum coreanum extract (SCE) on blood glucose concentration and insulin resistance in C57BL-KsJ-db/db mice. MATERIALS/METHODS For 6 weeks, male C57BL/KsJ-db/db mice were administrated SCE (0.5%, w/w), and rosiglitazone (0.005%, w/w). RESULTS A supplement of the SCE for 6 weeks induced a significant reduction in bl...

متن کامل

The total flavonoids from Selaginella tamariscina (beauv.) Spring improve glucose and lipid metabolism in db/db mice

Objective(s): This study aimed to investigate the glucose and lipid metabolism improving effect of the total flavonoids from Selaginella tamariscina (Beauv.) Spring (TFST) on db/db mice, and to study its mechanism of action.Materials and Methods: The db/db mice were divided into 5 groups: the normal group (NC), the diabetic group (DM), t...

متن کامل

Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice.

We previously reported that brain-derived neurotrophic factor (BDNF) regulates both food intake and blood glucose metabolism in rodent obese diabetic models such as C57BL/KsJ-lepr(db)/lepr(db) (db/db) mice. To elucidate the effect of BDNF on glucose metabolism, we designed a novel pellet pair-feeding apparatus to eliminate the effect of appetite alteration on glucose metabolism. The apparatus w...

متن کامل

Dapagliflozin‐lowered blood glucose reduces respiratory Pseudomonas aeruginosa infection in diabetic mice

BACKGROUND AND PURPOSE Hyperglycaemia increases glucose concentrations in airway surface liquid and increases the risk of pulmonary Pseudomonas aeruginosa infection. We determined whether reduction of blood and airway glucose concentrations by the anti-diabetic drug dapagliflozin could reduce P. aeruginosa growth/survival in the lungs of diabetic mice. EXPERIMENTAL APPROACH The effect of dapa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2014